Semiconductors

DTMF RECEIVER

DESCRIPTION

The SC9270C/D is a complete DTMF receiver integrating both the bandsplit filter and digital decoder functions. The filter section uses switched capacitor techniques for high- and low-group filters and dial-tone rejection. Digital counting techniques are employed in the decoder to detect and decode all 16 DTMF tone-pairs into a 4-bit code. External component count is minimized by on-chip provision of a differential input amplifier, clock-oscillator and latched 3-state bus interface.

FEATURES

*Complete receiver in an 18-pin package
*Excellent performance
*CMOS, single 5 volt operation,
*Widely operating voltage: $1.2 \mathrm{~V} \sim 5.25 \mathrm{~V}$
*Minimum board area
*Central office quality
*Low power consumption
*Power-Down mode (SC9270D only)
*Inhibit-mode (SC9270D only)

APPLICATIONS

*Paging systems
*Repeater systems / Mobile radio
*Credit card systems
*Remote control
*Personal computers

PIN CONFIGURATIONS

* Connect to Vss

Semiconductors

BLOCK DIAGRAM

Figure 1. block diagram
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2, 3)

Characteristic	Symbol	Value	Unit
Power Supply Voltage	VDD-VSS	6	V
Voltage on any pin	--	VSs-0.3 ~ VDD +0.3	V
Current at any pin	--	10	mA
Operating temperature	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Package power dissipation		500	mW

Note: 1. Absolute maximum ratings are those values beyond which damage to the device may occur.
2. Unless otherwise specified, all voltages are referenced to ground.
3. Power dissipation temperature derating: $-12 \mathrm{mV} /$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (Note 1)

Parameter	Symbol	Conditions	Min	Typ(Note 2)	Max	Unit
Positive Supply Voltages	VDD	VSS=0V	1.2	5	--	V
Oscillator Clock Frequency	fc	--	--	3.579545	--	MHz
Oscillator Frequency Tolerance	$\Delta \mathrm{fc}$	--	--	± 0.1	--	$\%$

Note: 1. Voltages are with respect to ground(Vss), unless otherwise stated.
2 . Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.
\qquad

Semiconductors

DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
SUPPLY						
Operating Supply Voltage	VDD	--	1.2	--	5.25	V
Operating Supply Current	Icc	--	--	3.0	7.0	mA
Power Consumption	PO	$\mathrm{f}=3.579 \mathrm{MHz}$; VDD=5V	--	15	35	mW
Standby Current	IS	PWDN pin = VDD	--	--	100	$\mu \mathrm{A}$
INPUTS						
Low Level Input Voltage	VIL	--	--	--	1.5	V
High Level Input Voltage	VIH	--	3.5	--	--	V
Input Leakage Current	$\mathrm{liH} / \mathrm{ll}$	$\mathrm{VIN}=\mathrm{VSS}$ or VDD	--	0.1	--	$\mu \mathrm{A}$
Pull up(Source) Current	Iso	TOE(Pin 10) $=0 \mathrm{~V}$	--	7.5	15	$\mu \mathrm{A}$
Input Impedance (IN_{+}, IN-)	RIN	@1kHz	--	10	--	$\mathrm{M} \Omega$
Steering Threshold Voltage	VTSt	--	--	2.35	--	V
OUTPUTS						
Low Level Output Voltage	VOL	No load	--	0.03	--	V
High Level Output Voltage	VOH	No load	--	4.97	--	$\mu \mathrm{A}$
Output Low(Sink) Current	IOL	Vout $=0.4 \mathrm{~V}$	1.0	2.5	--	mA
Output High(Source) Current	IOH	VOUT $=4.6 \mathrm{~V}$	0.4	0.8	--	mA
Vref Output Voltage	VREF	No load	2.4	--	2.7	V
VReF Output Resistance	ROR	--	--	10	--	k Ω

OPERATING CHARACTERISTICS

Gain Setting Amplifier

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input Leakage Current	IIN	VSS < VIN < VDD	--	± 100	--	nA
Input Resistance	RIN	--	--	10	--	$\mathrm{M} \Omega$
Input Offset Voltage	VoS	--	--	± 25	--	mV
Power Supply Rejection	PSRR	1 kHz	--	60	--	dB
Common Mode Rejection	CMRR	$-3.0 \mathrm{~V}<$ VIN < 3.0V	--	60	--	dB
DC Open Loop Voltage Gain	AVOL	--	--	65	--	dB
Open Loop Unity Gain Bandwidth	fC	--	--	1.5	--	MHz
Output Voltage Swing	Vo	RL $\geq 100 \mathrm{k} \Omega$ to VSS	--	4.5	--	VPP
Tolerable capacitive load(GS)	CL	--	--	100	--	PF
Tolerable resistive load(GS)	RL	--	--	50	--	$\mathrm{k} \Omega$
Common Mode Range	VCM	No load	--	3.0	--	VPP

Notes: 1. All voltages referenced to VDD unless otherwise noted.
2. $\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
_- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD

AC CHARACTERISTICS (All voltage referenced to Vss otherwise noted; VDD=5.0V, VsS $=0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$, fCLK=3.579545 MHz, using test circuit of figure 2 \& 3 . Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing)

Parameter	Symbo 1	Test Conditions	Min	Typ	Max	Unit
SIGNAL CONDITIONS						
Valid Input Signal Levels (each tone of composite signal)	--	Note:1,2,3,5,6,9,11	--	--	-40	dBm
	--	Note:1,2,3,5,6,9,11	--	--	7.75	mVRMS
	--	Note:1,2,3,5,6,9,11	+1	--	--	dBm
	--	Note:1,2,3,5,6,9,11	883	--	--	mVRMS
Positive Twist Accept	--	Note:2,3,6,9,11	--	10	--	dB
Negative Twist Accept	--	Note:2,3,6,9,11	--	10	--	dB
Frequency Deviation Accept Limit	--	Note:2,3,5,9,11	--	$\pm 1.5 \% \pm 2 \mathrm{~Hz}$	--	
Frequency Deviation Reject Limit	--	Note:2,3,5,11	± 3.5	--	--	
Thrid Tone Tolerance	--	Note:2,3,4,5,9,13	-18.5		--	dB
Noise Tolerance	--	Note:2,3,4,5,7,9,10	--	-12		dB
Dial Tone Tolerance	--	Note:2,3,4,5,8,9,11	--	+18	--	dB
TIMING						
Tone Present Detection Time	tDP	Refer to Fig. 4. Note:12	5	14	16	ms
Tone Absent Detection Time	tDA	Refer to Fig. 4. Note:12	0.5	4	8.5	ms
Tone Duration Accept	trec	User adjustable	--	--	40	ms
Tone Duration Reject	trec	User adjustable	20	--	--	ms
Interdigit Pause Accept	tID	User adjustable	--	--	40	ms
Interdigit Pause Reject	tDo	User adjustable	20	--	--	ms
OUTPUTS						
Propagation Delay (St to Q)	tPQ	TOE=VDD	--	8	11	$\mu \mathrm{s}$
Propagation Delay (St to StD)	tPSED	TOE=VDD	--	12	--	$\mu \mathrm{s}$
Output Data Set Up (Q to Std)	tQSED	TOE=VDD	--	4.5	--	$\mu \mathrm{s}$
Propagation Delay (TOE to Q Enable)	tPTE	RL=10k $\Omega, \mathrm{CL}=50 \mathrm{pf}$	--	50	--	ns
Propagation Delay (TOE to Q Disable)	tPTD	RL=10k $\Omega, \mathrm{CL}=50 \mathrm{pf}$	--	300	--	ns
CLOCK						
Crystal/Clock Frequency	fc	--	3.5759	3.5759	3.581	MHz
Clock Input Rise Time	tLHCL	Ext. clock	--	--	110	ns
Clock Input Fall Time	tHLCL	Ext. clock	--	--	110	ns
Clock Input Duty Time	DCCL	Ext. clock	40	50	60	\%
Capacitive Load (OSCO)	CLO	--	--	--	30	pf

Notes: $1 . \mathrm{dBm}=$ decibels above or below a reference power of 1 mW into a 600 Ohm load.
2. Digit sequences consists of all 16 DTMF tones.

Silan
Semiconductors
3. Tone duration $=40 \mathrm{mS}$ Tone pause $=40 \mathrm{mS}$.
4. Nominal DTMF frequencies are used.
5. Both tones in the composite signal have an equal amplitude.
6. Tone pair is deviated by $\pm 1.5 \% \pm 2 \mathrm{~Hz}$.
7. Bandwidth limited (3 kHz) Gaussian Noise.
8. The precise dial tone frequencies are $(350 \mathrm{~Hz}$ and 440 Hz$) \pm 2 \%$.
9. For an error rate of less than 1 in 10,000.
10. Referenced to the lowest level frequency component in DTMF signal.
11. Referenced to the minimum valid accept.
12. For guard time calculation purpose.
13. Referenced to Fig. 10 Input DTMF Tone level at $-25 \mathrm{dBm}(-28 \mathrm{dBm}$ at GS Pin) interference Frequency

Range between $480-3400 \mathrm{~Hz}$.

Figure 2. Single ended input cofiguration

Figure 3. Single ended input cofiguration

Semiconductors
PIN DESCRIPTION

Pin No.	Pin Name	1/0	Description
1	IN_{+}	1	Connections to the front-end differential amplifier.
2	IN-	1	
3	GS	--	Gain select. Gives access to output of front-end differential amplifier for connection of feedback resistor.
4	Vref	0	Reference voltage output, nominally VDD/2. May be used to bias the inputs at mid-rail (see application diagram).
5	INH	I	Inhibit (input) logic high inhibit the detection of 1633 Hz internal built-in pull down resistor. (SC9270D only). (For SC9270C, this pin must be tied to VSS)
6	PWDN	1	Power down (input). Active high power down the device and inhibit the oscillator internal built-in pull down resistor. (SC9270D only). (For SC9270C, this pin must be tied to VSS) \qquad
7	OSC1	1	3.579545 MHz crystal connected between these pins completes internal oscillator.
8	OSC2	0	
9	Vss	--	Negative power supply, normally connected to OV .
10	TOE	1	3-state data output enable. Logic high enables the outputs Q1-Q4. This pin is Internally pulled up.
11~14	Q1 ~ Q4	O	3-state data outputs. When enabled by TOE, provide the code corresponding to the last valid tone-pair received (see Table 1). When TOE is logic low, the data outputs are high impedance.
15	StD	O	Delayed steering output. Presents a logic high when a received tone-pair has been registered and the output latch updated; returns to logic low when the voltage on St/GT falls below VTSt.
16	ESt	O	Early steering output. Presents a logic high immediately when the digital algorithm detects a recognizable tone-pair (signal condition). Any momentary loss of signal condition will cause ESt to return to a logic low.
17	St/GT	I/O	Steering input/guard time output (bi-directional). A voltage greater than VTSt detected at St causes the device to register the detected tone-pair and update the output latch. A voltage less than VTSt frees the device to accept a new tonepair. The GT output acts to reset the external steering time-constant; its state is a function of ESt and the voltage on St.
18	VDD	--	Positive power supply.

Semiconductors

TIMING DIAGRAM

Figure 4. Timing diagram

EX	EXPLANATIONN OF SYMBOLS
A. Short tone bursts: detected. Tone duration is invalid. B. Tone \#n is detected. Tone duration is valid. Decoded to outputs. C. End of tone \#n is detected and validated. D. 3 State outputs disabled (high impedance). E. Tone \#n + 1 is detected. Tone duration is valid. Decoded to outputs. F. Tristate outputs are enabled. Acceptable drop out of tone $\# n+1$ does not negister at outputs. G. End of tone \#n+1 is detected and validated.	Vin: DTMF composite input signal. $t_{\text {REC }}$:Maximum DTMF signal duration not detected as valid. tREC: Minimum DTMF Signal duration required for valid recognition. tID: Minimum time between valid DTMF signals. tDo: Maximum allowable dropout during valid DTMF signal tDP: Time to detect the presence of valid DTMF signals. tDP: Time to detect the absence of valid DTMF signals. tGTP: Guard Time, Tone present. tGTP: Guard Time, Tone absent.

Semiconductors

FUNCTION DESCRIPTIONS

The SC9270C/D monolithic DTMF receiver offers small size, low power consumption and high performance. Its architecture consists of a bandsplit filter section, which separates the high and low tones of receiver pair, followed by a digital counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus.

1. FILTER SECTION

Separation of the low-group and high-group tones is achieved by applying the dual tone signal to the inputs of two filters a sixth order for the high group and an eighth order for the low group. The bandwidths of which correspond to the bands enclosing the low-group and high-group tones (see table 1). The filter section also in corporates notches at 350 Hz and 440 Hz for exceptional dial-tone rejection. Each filter output is followed by a second-order switchedcapacitor section which smooth the signals prior to limiting. Limiting is performed by high-gain comparators which are provided with hysteresis to prevent detection of unwanted low-level signals and noise; the outputs of the comparators provide full-rail logic swings at the frequencies of the incoming tones.

Flow	Fhigh	KEY	TOE	Q4	Q3	Q2	Q1
697	1209	1	H	0	0	0	1
697	1336	2	H	0	0	1	0
697	1477	3	H	0	0	1	1
770	1209	4	H	0	1	0	0
770	1336	5	H	0	1	0	1
770	1477	6	H	0	1	1	0
852	1209	7	H	0	1	1	1
852	1336	8	H	1	0	0	0
852	1477	9	H	1	0	0	1
941	1336	0	H	1	0	1	0
941	1209	$*$	H	1	0	1	1
941	1477	$\#$	H	1	1	0	0
697	1633	A	H	1	1	0	1
770	1633	B	H	1	1	1	0
852	1633	C	H	1	1	1	1
941	1633	D	H	0	0	0	0
--	--	ANY	L	Z	Z	Z	Z
L=LOGIC LOW, H=LOGIC HIGH, Z=HIGH IMPEDANCE							
Table 1: Function decode table							

\qquad

Figure 5. Filter Response

2. DECODER SECTION

The decoder used digital counting techniques to determine the frequencies of the limited tones and to verify that they correspond to standard DTMF frequencies. A complex averaging algorithm(protects) against tone simulation by extraneous signals, such as voice, while providing tolerance to small frequency deviations and variations. This averaging algorithm has been developed to ensure an optimum combination of immunity to "talk-off" and tolerance to the presence of interfering signals ("third tones") and noise. When the detector recognizes the simultaneous presence of two valid tones (referred to as "signal condition" in some industry specifications), it raises the "early steering" flag (ESt). Any subsequent loss of signal condition will cause ESt to fall.

3. STEERING CIRCUIT

Before registration of a decoded tone-pair, the receiver checks for a valid signal duration (referred to as "character- recognition-condition"). This check is performed by an external RC time-constant driven by ESt. A logic high on ESt causes Vc (see Fig.4) to rise as the capacitor discharges. Provided signal-condition is maintained (ESt remains high) for the validation period (tGTP), Vc reaches the threshold (VTSt) of the steering logic to register the tone-pair, latching its corresponding 4-bit code (see Fig.3) into the output latch. At this point,

Figure 6. Basic steering Circuit the GT output is activated and drives VC to VDD. GT
\qquad
continues to drive high as long as ESt remains high. Finally after a short delay to allow the output latch to settle, the "delayed-steering" output flag, StD, goes high, signaling that a received tone-pair has been registered. The contents of the output latch are made available on the 4 -bit output bus by raising the 3 -state control input (TOE) to a logic high. The steering circuit works in reverse to validate the interdigit pause between signals. Thus, as well as rejecting signals too short to be considered valid, the receiver will tolerate signal interruptions ("drop-out") too short to be considered a valid pause. The facility, together with the capability of selecting the steering time-constants externally, allows the designer to tailor performance to meet a wide variety of system requirements.

4. GUARD TIME ADJUSTMENT

In many situations not requiring independent selection of receive and pause, the simple steering circuit of Fig. 6 is applicable. Component values are chosen according to the following formulae:

$$
\text { tREC }=\text { tDP }+ \text { tGTP } \quad \mathrm{tID}=\mathrm{tDA}+\mathrm{tGTA}
$$

The value of tDP is a parameter of the device (see table) and tREC is the minimum signal duration to be recognized by the receiver. A value for C of $0.1 \mu \mathrm{~F}$ is recommended for most applications, leaving R to be selected by the designer. For example, a suitable value of R for a tREC of 40 mS would be 300 k . Different steering arrangements may be used to select independently the guard-times for tone-present (tGTP) and tone-absent (tGTA). This may be necessary to meet system specifications which place both accept and reject limits on both tone duration and interdigital pause. Guard-time adjustment also allows the designer to tailor system parameters such as talk off and noise immunity. Increasing tREC improves talk-off performance, since it reduces the probability that tones simulated by speech will maintain signal condition for long enough to be registered. On the other hand, a relatively short tREC with a long tDO would be appropriate for extremely noisy environments where fast acquisition time and immunity to drop - outs would be required. Design information for guard-time adjustment is shown in Fig.7.

b) Decreasing tGTP (tGTP > tGTA)

Figure 7. Guard time adjustment

5. INPUT CONFIGURATION

The input arrangement of the SC9270C/D provides a differential-input operational amplifier as well as a bias source (VREF) which is used to bias the inputs at mid-rail.
Provision is made for connection of a feedback resistor to the op-amp output (GS) for adjustment of gain. In a singleended configuration, the input pins are connected as shown in Fig. 2 with the op-amp connected for unity gain and VREF biasing the input at $1 / 2$ VDD.
Fig. 8 shows the differential configuration, which permits the adjustment of gain with the feedback resistor R5.

Figure 8. Differential input configuration

6. POWER - DOWN AND INHIBIT MODE

A logic high applied to pin 6 (PWDN) will power the device to minimize the power consumption in a standby mode. It stops the oscillator and the functions of the filters.

Inhibit mode is enabled by a logic high input to the pin 5 (INH). It inhibits the detection of 1633 Hz . The output code will remain the same as the previous detected code (see table 2)

fLOW	Fhigh	KEY	TOE	Q4	Q3	Q2	Q1
697	1209	1	H	L	L	L	H
697	1336	2	H	L	L	H	L
697	1477	3	H	L	L	H	H
770	1209	4	H	L	H	L	L
770	1336	5	H	L	H	L	H
770	1477	6	H	L	H	H	L
852	1209	7	H	L	H	H	H
852	1336	8	H	H	L	L	L
852	1477	9	H	H	L	L	H
941	1336	0	H	H	L	H	L
941	1209	*	H	H	L	H	H
941	1477	\#	H	H	H	L	L
697	1633	A	H	H	H	L	H
770	1633	B	H	H	H	H	L
852	1633	C	H	H	H	H	H
941	1633	D	H	L	L	L	L
--	--	ANY	L	Z	Z	Z	Z

fLOW	Fhigh	KEY	TOE	Q4	Q3	Q2	Q1
697	1209	1	H	L	L	L	H
697	1336	2	H	L	L	H	L
697	1477	3	H	L	L	H	H
770	1209	4	H	L	H	L	L
770	1336	5	H	L	H	L	H
770	1477	6	H	L	H	H	L
852	1209	7	H	L	H	H	H
852	1336	8	H	H	L	L	L
852	1477	9	H	H	L	L	H
941	1336	0	H	H	L	H	L
941	1209	*	H	H	L	H	H
941	1477	\#	H	H	H	L	L
697	1633	A	H	PREVIOUS DATA			
770	1633	B	H				
852	1633	C	H				
941	1633	D	H				
--	--	ANY	L	Z	Z	Z	Z

$\mathrm{INH}=\mathrm{VSS}$
Table 2: Truth table
$\mathrm{INH}=\mathrm{VDD}$
\qquad

6. CRYSTAL OSCILLATOR

The internal clock circuit is completed with the addition of an external 3.579545 MHz crystal and is normally connected as shown in Figure 2. However, it is possible to configure several SC9270C/D devices employing only a single oscillator crystal. The oscillator output of the first device in the chain is coupled through a 30 pF capacitor to the oscillator input (OSCI) of the next device. Subsequent devices are connected in a similar fashion. Refer to Figure 9 for details. The problems associated with unbalanced loading are not a concern with the arrangement shown, ie: precision balancing capacitors are not required.

Figure 9 Oscillator Connection

PACKAGE OUTLINE

\qquad

